Cyclic Group Actions on Riemann Surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Actions, Cyclic Coverings and Families of K3-surfaces

In this paper we describe six pencils of K3-surfaces which have large Picardnumber (15 ≤ ρ ≤ 20) and contain precisely five singular fibers: four have A-D-E singularities and one is non-reduced. In particular we describe these surfaces as cyclic coverings of the K3-surfaces of [BS]. In many cases using this description and latticetheory we are able to compute the exact Picard-number and to desc...

متن کامل

Topological Classification of Conformal Actions on pq-Hyperelliptic Riemann Surfaces

A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X admits a conformal involution ρ for which X/ρ is an orbifold of genus p. Here we classify conformal actions on 2-hyperelliptic Rieman surfaces of genus g > 9, up to topological conjugacy and determine which of them can be maximal.

متن کامل

On automorphisms groups of cyclic p-gonal Riemann surfaces

In this work we obtain the group of conformal and anticonformal automorphisms of real cyclic p-gonal Riemann surfaces, where p ≥ 3 is a prime integer and the genus of the surfaces is at least (p − 1) + 1. We use Fuchsian and NEC groups, and cohomology of finite groups.

متن کامل

On Cyclic Groups of Automorphisms of Riemann Surfaces

The question of extendability of the action of a cyclic group of automorphisms of a compact Riemann surface is considered. Particular attention is paid to those cases corresponding to Singerman's list of Fuchsian groups which are not nitely-maximal, and more generally to cases involving a Fuchsian triangle group. The results provide partial answers to the question of which cyclic groups are the...

متن کامل

Some Cyclic Group Actions on Homotopy Spheres

In [4J Orlik defined a free cyclic group action on a homotopy sphere constructed as a Brieskorn manifold and proved the following theorem: THEOREM. Every odd-dimensional homotopy sphere that bounds a para-llelizable manifold admits a free Zp-action for each prime p. On the other hand, it was shown ([3J) that there exists a free Zp-action on a 2n-1 dimensional homotopy sphere so that its orbit s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1984

ISSN: 0002-9939

DOI: 10.2307/2045169